Inhalt

Illustration Strahlungsgürtel mit ultrarelativistischen Elektronen. Michaelis, Shprits (GFZ)

Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?

Neue Studie zeigt: In der Magnetosphäre müssen dafür sehr spezielle Bedingungen herrschen, nämlich eine extrem geringe Plasmadichte.

Neuere Messungen von Raumsonden der NASA haben gezeigt: Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit. Hayley Allison, Yuri Shprits und Kolleg*innen vom Deutschen GeoForschungsZentrum Potsdam haben herausgefunden, unter welchen Voraussetzungen es zu solch starken Beschleunigungen kommt. Bereits 2020 hatten sie nachgewiesen, dass Plasmawellen, die bei Sonnenstürmen auftreten, eine entscheidende Rolle spielen. Allerdings war bislang offen, warum derart hohe Elektronenenergien nicht bei allen Sonnenstürmen erreicht werden. Im Fachmagazin Science Advances zeigen die Forschenden nun, dass hierfür die Dichte des Hintergrundplasmas extrem gering sein muss.

Ultra-relativistische Elektronen im Weltraum

Bei ultra-relativistischen Energien bewegen sich Elektronen mit nahezu Lichtgeschwindigkeit. Dann kommen die Gesetze der Relativitätstheorie zum Tragen. Die Masse der Teilchen wächst um einen Faktor zehn, für sie vergeht die Zeit langsamer und Entfernungen werden kürzer. Mit derart hohen Energien werden die geladenen Teilchen zur Gefahr für Satelliten: Weil sie nicht abschirmbar sind, können sie aufgrund ihrer Ladung die empfindliche Elektronik zerstören. Ihr Auftreten vorherzusagen – zum Beispiel im Rahmen der am GFZ praktizierten Beobachtung des Weltraumwetters – ist daher für eine moderne Infrastruktur sehr wichtig.

Um die Bedingungen für die enormen Beschleunigungen der Elektronen zu untersuchen, nutzten Allison und Shprits Daten einer Zwillingsmission, die „Van Allen Probes“, welche die US-amerikanische Weltraumagentur NASA 2012 startete. Ziel waren detaillierte Messungen im Strahlungsgürtel, dem sogenannten Van-Allen-Gürtel, der die Erde im erdnahmen Weltraum donut-förmig umgibt. Hier – wie im übrigen Weltraum – bildet ein Gemisch aus positiv und negativ geladenen Teilchen ein sogenanntes Plasma. Plasmawellen können als Fluktuation des elektrischen und magnetischen Feldes verstanden werden, angeregt von Sonnenstürmen. Sie sind eine wichtige Triebkraft für die Beschleunigung der Elektronen.

Datenanalyse mit maschinellem Lernen

Im Rahmen der Mission wurden sowohl Sonnenstürme beobachtet, die ultra-relativistische Elektronen hervorriefen, als auch Stürme ohne diesen Effekt. Als entscheidender Faktor für die starke Beschleunigung stellte sich die Dichte des Hintergrundplasmas heraus: Elektronen mit ultra-relativistischen Energien wurden nur dann vermehrt beobachtet, wenn die Plasmadichte auf sehr niedrige Werte von nur etwa zehn Teilchen pro Kubikzentimeter abfiel. Mit einem numerischen Modell, das eine solche extreme Plasmaverarmung auf ein Fünftel bis ein Zehntel ihres durchschnittlichen Wertes einbezog, zeigten die Forschenden, dass Perioden niedriger Dichte bevorzugte Bedingungen für die Beschleunigung von Elektronen schaffen – von ursprünglich einigen Hunderttausend auf mehr als sieben Millionen Elektronenvolt. Für die Analyse der Daten der Van-Allen-Sonden verwendeten die Forschenden Methoden des maschinellen Lernens, deren Entwicklung vom Netzwerk GEO.X finanziert wurde. Sie ermöglichten es, aus den gemessenen Fluktuationen des elektrischen und magnetischen Feldes auf die Gesamtplasmadichte zu schließen. Mehr erfahren...

Kontextspalte

Kontakt

Deutsche Geologische
Gesellschaft – Geologische
Vereinigung e. V. (DGGV)

Geschäftsstelle Berlin
Rhinstraße 84
12681 Berlin

Ansprechpartnerin:
Frau Lara Müller-Ruhe
Tel. 030-509 640 48
E-Mail senden

www.dggv.de

Erdölförderung im Emsland

Erdölförderung im Emsland (Foto: Wintershall Holding GmbH)