Skip to main content

Proximal to distal grain-size distribution of basin-floor lobes: A study from the Battfjellet Formation, Central Tertiary Basin, Svalbard

The grain-size distribution of sediment particles is an important aspect of the architecture of submarine fans and lobes. It governs depositional sand quality, and reflects distribution of particulate organic carbon and pollutants. Documenting the grain-size distribution of these deep-marine sedimentary bodies can also offer us an insight in the flows that deposited them. Submarine lobes are commonly assumed to linearly fine from an apex, meaning there should be a proportional relation between grain size and distance from the lobe apex. However, not much detailed quantitative work has been done to test this hypothesis. Exposure of a 5 km long dip-section of basin-floor lobes in Clinoform 12, Battfjellet Formation, Spitsbergen, enable the study of basinward grain-size evolution in lobe deposits. Furthermore, the dataset allows testing if there are any documentable grain-size differences between lobe sub-environments.

The results show that fining of lobe deposits occurs predominantly in the most proximal and most distal parts of the lobe, while the intermediate lobe, which is dominated by lobe off-axis deposits, is characterized by a relatively consistent grain-size range. Lobe sub-environments show statistically distinct grain-size distributions from lobe axis to lobe fringe. An explanation for these trends is the interplay of capacity and competence-driven deposition with the grain-size stratification of the flows.

The outcomes of this study help to better understand the proximal to distal evolution of turbidity currents and their depositional patterns. They also provide important insights in reservoir potential of basin-floor fans at lobe scale.


Yvonne T. Spychala1, Thymen A.B. Ramaaker2, Joris T. Eggenhuisen2, Sten-Andreas Grundvåg3, Florian Pohl4, Sara Wroblewska5
1Institut für Geologie, Leibniz Universität Hannover, Germany; 2Department of Earth Science, Utrecht University, 3584 CB, Utrecht, Netherlands; 3Department of Geosciences, UiT – The Arctic University of Norway, PO Box 6050 Langnes, N-9037 Tromsø, Norway; 4Durham University, Department of Earth Sciences, Stockton Road, Durham DH1 3LE, UK; 5Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
GeoKarlsruhe 2021