The Kalahari Manganese Field (KMF) of the Northern Cape Province of South Africa hosts about 74% of all known minable manganese ores globally. It represents the largest known land-based Mn deposit. More than 90% of the resource can be best described as mangano-lutite, e.g., a microcrystalline, ovoid-rich, finely laminated chemo-sedimentary rock containing between 30-40 wt.% Mn. Despite its great geological age (2.42 Ga), the mangano-lutite and its surrounding volcano-sedimentary host rock succession (Transvaal Supergroup) have not experienced any significant metamorphic overprint. Owing to its exceptionally fine-grain size and unusual composition, the mineral paragenesis and diagenetic microfabric of the mangano-lutites remain poorly documented. This contribution aims to show that modern SEM-EDS-based image analysis platforms, such as the TESCAN TIMA instrument, can not only provide quantitative mineralogical data, but can also reveal unprecedented insight into diagenetic microfabric and a complex succession of mineral assemblages in the mangano-lutites. The instrumental approach developed for this application is of extreme industrial and economic importance due to increasingly complex ores and a mandatory need to beneficiate by-products in the shift to sustainable mining. It can be easily transferred to other applications on fine-grained rocks (e.g. carbonate mudstones, fault gouges), ores (e.g. nickel laterites, bauxites) or anthropogenic solid materials (e.g. tailings, flue dusts).