It is a well-known fact that the city of Cluj-Napoca in Romania has a diverse geological stratification, based on the geological data and studies performed on the soil by geologists. Also, the measurements and studies performed of radon in soil conclude the fact that in certain parts, the geological formations lead to a higher concentration of geogenic radon, thus making the soil in this area a radon prone hotspot. The following presentation aims to show the correlations between the radon prone geological areas and the accumulation of high concentrations (indoor radon) in different types of buildings, regarding a few examples of residential buildings like houses and big building categories such as public institutions. The studies performed so far show different accumulation between buildings, but even the way that certain buildings were built in the same area where the soil has a high radon potential. This shows that even if the population builds in high radon prone areas, there is a way to build buildings, following radon building guidelines to limit the diffusion of radon trough out the foundation of the building or even blocking it completely.
There are three key factors when talking about a high radon concentration risk exposure indoors, that are the following: the radon potential in the soil where the building is built, the way and techniques used to build the certain building and the way the building is used on a daily bases.