Skip to main content

Bioleaching of Rare Earth Elements from Primary Resources using Heterotrophic Organisms

Rare earth elements (REE) are essential for various modern "green" technologies. However, conventional mining and extraction methods for REEs are energy-intensive, environmentally harmful, and call for the evaluation of alternative extraction procedures for these critical raw materials. Bioleaching processes have been successfully employed in the industrial extraction of metals and offer a promising and eco-friendly approach to enhance the sustainability of REE extraction. This study evaluates the potential of bioleaching REEs from unprocessed carbonatitic and alkaline bulk rocks.

Batch and supernatant leaching experiments were conducted on a Carbonatite sample from the Fen-Complex (Norway) and two nepheline syenites (a Grennatite and a pegmatitic Grennaite from Norra Kärr, Sweden), utilizing the heterotrophic organisms Yarrowia lipolytica and Tea fungus Kombucha. The influences of bulk mineralogy on microbial growth and metabolite production, as well as leaching rates and applicability of the different approaches were assessed.

The results demonstrate varying recovery rates based on mineralogy and leaching methods, with preferential leaching of light or heavy REEs depending on the selected organisms. Notably, the highest leaching efficiency of 54% REE recovery was achieved with Y. lipolytica supernatant leaching on pegmatitic Grennaite during a 19-day experiment. Carbonatite and Grennaite samples exhibited lower maximum leaching rates of 5% and 8%, respectively.

The findings demonstrate the proof-of-concept feasibility of bioleaching REEs from unprocessed bulk rock materials and highlight its strong potential, especially in providing a sustainable solution for utilizing low-grade ores and mine waste.


Debby Schmidt1, Uwe Altenberger1, Sabine Kutschke2
1Universität Potsdam; 2Helmholtz-Institut Freiberg für Res­sourcen­tech­no­logie
GeoBerlin 2023