Skip to main content

Challenges in developing a transboundary groundwater model for the water stressed capital region of Berlin-Brandenburg

Higher temperatures and increasing droughts are likely to lead to a reduction in available water resources in the Berlin-Brandenburg region. Concurrently, there is an increasing demand for water due to the population and economic development in the region. This results in serious water management challenges. To mitigate this water scarcity, in 2021, work began on setting up a coordinated joint groundwater management system based on a transboundary groundwater flow model for the capital region (approx. 2800 km², from which Berlin covers 892 km²). The central component is the modelling of the reciprocal effects of the groundwater abstraction by the water suppliers in the region with regard to sustainable management of the common groundwater body. In the first step, the hydrogeological structural model (HSM) for the region is created. In doing so, up-to-date geological sections from the Berlin and Brandenburg Geological Surveys as well as stratigraphical settings from existing calibrated groundwater models are brought together. The groundwater models of the Berliner Wasserbetriebe are also incorporated in this process. These models have been developed since approximately 20 years and are regularly updated. They are used both in approval processes and in daily operation. In the second step, the HSM is converted into a flow model. This flow model is calibrated and compared with the existing models. In the end, a model for the entire capital region will be available for the first time. At the conference, the current status of the project will be presented and the challenges will be highlighted.

Details

Author
Bertram Monninkhoff1, Kerstin Kernbach2, Ulrike Hoermann2, Johannes Birner2, Felix Moehler3, Malte Kalter3
Institutionen
1Berliner Wasserbetriebe, Germany; 2Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz; 3GCI GmbH
Veranstaltung
GeoBerlin 2023
Datum
2023
DOI
10.48380/9d14-aj56