Tridacna shells feature macroscopically visible bands (at mm scale) as well as microscopically visible daily banding (at µm scale). To evaluate the lifespan of an individual, the presumably seasonal macroscopically visible bands can be counted, or stable oxygen isotope analysis can be used to identify seasonal cycles. However, these approaches may not always be conclusive, especially for Tridacna which at times display irregular seasonal growth patterns and often grow in equatorial areas with low seasonal SST variability and heavy seasonal precipitation, influencing δ18O seawater values. Counting the daily bands (manually or with software-based image analysis) gives a more accurate internal age model with high temporal resolution, but daily banding is not always visually retrievable in fossil specimens, hampering the production of a precise age estimate. We show that daily geochemical cycles can be measured with highly-spatially resolved laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS; 3 x 33 µm laser slit) in our Miocene (~10 Ma) specimen, even in areas where daily banding is not visible. We present a python script Daydacna, in which we use wavelet transformation on the measured daily geochemical cycles to quantify varying daily growth rates throughout the shell. This provides a robust alternative to visual band counting. The resulting age model can be used to quantify seasonal growth rate variability over several decades and provide a basis for time resolved sub-seasonal paleoenvironmental proxy evaluation.