Skip to main content

Geological and geophysical data integration and modeling approach for subsurface characterization; Northern Bavaria case study

Characterizing the subsurface structural and stratigraphic configuration is critical to address current global environmental challenges such as green energy transition and underground storage. Northern Bavaria, as our case study, is mainly covered by Permo-Mesozoic sedimentary units. Local and regional thickness changes are mainly attributed to the partly exposed structural complexity. To the east, the exposed crystalline rocks consist mainly of metamorphic rocks of Variscan affinity and late to post- orogenic intrusions. The presence and extent of granitic intrusions as a source of heat production and the estimation of the depth to the base of Permo-Mesozoic sedimentary cover are the main objectives of this study.

In this study, we integrate the information from wells and exposed basement geology with reprocessed DEKORP seismic reflection, recently acquired 230 km 2D seismic reflection, Bouguer gravity anomaly and magnetic data to improve our understanding of the structural and stratigraphic configuration of the subsurface in northern Bavaria. Our first results confirm the presence of a granitic body (Hassfurt Granite) as the main source of thermal anomaly observed in northern Bavaria. We also show Permian (Rotliegend) grabens and half grabens storing 1-1.5 km thick sedimentary units. Rotliegend units are covered by relatively tabular Mesozoic cover. In structural point of view, we show that some of the Permian basin bounding normal faults are reactivated as reverse faults during the Cretaceous inversion event. Our observations and models contribute to reservoir characterization (buried fault zones and associated brittle deformation) and reduce exploration and potential future development risks.

Details

Author
Hamed Fazlikhani1, Wolfgang Bauer1, Harald Stollhofen1, Daniel Koehn1
Institutionen
1Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Veranstaltung
GeoBerlin 2023
Datum
2023
DOI
10.48380/xpfz-zv76