Skip to main content

Green-field exploration strategy for de-risking geothermal projects in the Aachen-Weisweiler area, Germany – The “Field Scale Laboratory for Deep Geothermal Energy Rhineland” Project

The subsurface of the Aachen-Weisweiler area with its Carboniferous and Devonian carbonates is a green-field target location for testing and developing deep geothermal energy systems in North Rhine-Westphalia, Germany. Despite subsurface mining, surface mapping and isolated deep exploration wells and crustal seismic data, only sparse information on the deeper structures (down to 4,000 m), the spatial distribution of the reservoirs and reservoir properties has so far been recorded and/or published. Therefore, the complex structures of the faulted and folded Paleozoic layers remain unknown requiring further investigations. With the “Field Scale Laboratory for Deep Geothermal Energy Rhineland”, we aim to characterize the subsurface of the Aachen-Weisweiler area including its structural uncertainties, to quantify the reservoir properties of the carbonates and their associated parametric uncertainties to better describe the geological risk in exploring the reservoirs. Firstly, we constrain a geological model based on the publicly available surface and subsurface data and quantify its structural uncertainties. The model and the uncertainties are revised after the integration of vintage and newly acquired seismic data. Planned deep exploration wells will provide further constraints for the structural model but also deliver in-situ measurements of reservoir properties and geomechanical properties for subsequent thermo-hydraulic-mechanical modeling. The investigations contribute to the characterization of the potential geothermal reservoirs in this region, aid in the exploitation of the reservoirs, finding drilling locations for wells, and expand geological knowledge of the carbonates from other regions into Germany, hence, de-risking the geothermal plays in the Aachen-Weisweiler area.  

Details

Author
Florian Wellmann1, Oliver Ritzmann2, Michael Kettermann2, Jan Niederau2, Kira Aßhoff2, Alexander Jüstel3, Frank Strozyk2, Thomas Reinsch2, Rolf Bracke4
Institutionen
1Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany;Institute for Computational Geoscience, Geothermics and Reservoir Geophysics, RWTH Aachen University, Mathieustraße 30, 52074 Aachen, Germany; 2Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany; 3Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany;Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52072 Aachen, Germany; 4Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany;Chair of Geothermal Energy Systems, Faculty of Mechanical Engineering, Ruhr University Bochum, 44801 Bochum, Germany
Veranstaltung
GeoBerlin 2023
Datum
2023
DOI
10.48380/rm8k-wf32
Geolocation
North Rhine-Westphalia, Aachen, Rhenish Massif, Lower Rhine Embayment