Skip to main content
Aktuelles

Vulkananalyse in Echtzeit

By 7. September 2021Juli 6th, 2022No Comments

Explosive Vulkanausbrüche kündigen sich oft an: Die dynamischen Gas- und Magmaströme im Inneren des Berges verändern sich schon vorher merklich und bewirken unter anderem ein Heben und Senken der Vulkanoberfläche, das von Satelliten erfasst wird. Zur besseren Analyse und Interpretation dieser Beobachtungsdaten hat ein interdisziplinäres Team um Binayak Ghosh und Mahdi Motagh vom Deutschen GeoForschungsZentrum Potsdam (GFZ) Methoden des Maschinellen Lernens weiterentwickelt. Damit lassen sich nun auch sehr kleine Deformationen der Oberfläche automatisiert feststellen. Ihre Ergebnisse wurden im „IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing“ veröffentlicht. Sie sind eine wichtige Grundlage, um die wachsenden Datenmengen über die weltweit mehr als 1500 aktiven Vulkane quasi in Echtzeit analysieren zu können. Damit wird es auch möglich, präziser vor Ausbrüchen zu warnen.

Wie die Anzeichen bevorstehender Vulkanausbrüche frühzeitig und präzise zu detektieren und zu interpretieren sind, wird am GFZ in Kooperation diverser Disziplinen erforscht. „In die Beurteilung vulkanischer Aktivität fließen verschiedene Parameter ein“, erklärt der Vulkanologe Thomas Walter. „Dazu gehören seismische Messungen, Beobachtungen der Temperatur, der Zusammensetzung freigesetzter Gase – und der häufig sehr komplexen Oberflächendeformation.“ Letztere haben die Forschenden nun genauer unter die Lupe genommen.

Das Atmen der Vulkane

Schon in der griechischen Mythologie finden sich Analogien vulkanischer Aktivität zum menschlichen Atmen. Und tatsächlich: Die Oberfläche vieler Vulkane hebt und senkt sich messbar, fast so als atmeten sie ein, bevor sie Gas, Asche oder Lava ausspeien. Solche Wölbungen und Senkungen werden von Beobachtungssatelliten erfasst, die die Erde umkreisen. Mithilfe spezieller Radartechnologien tasten sie die Erdoberfläche ab. Bei jeder Erdumkreisung vergleichen sie die reflektierten Mikrowellen mit dem vorherigen Muster und berechnen daraus ein Interferenzbild, das die Änderungen des Bodens wiederspiegelt. Verformungen an einer Vulkanoberfläche betragen allerdings oft nur wenige Millimeter. In den Aufzeichnungen der Satelliten werden sie überlagert von Schwankungen in der Streuung der Mikrowellen an den Oberflächen oder von atmosphärischen Störsignalen. Die nun vorgestellte neue Methode der computergestützten Datenanalyse bringt deutlichen Fortschritt in der Interpretation der Satellitenaufnahmen. Sie wurde von Binayak Ghosh und Mahdi Motagh, Leiter der Arbeitsgruppe Radar und optische Fernerkundung, zur Analyse von Geohazards, in Kooperation mit Thomas Walter, Leiter der Arbeitsgruppe Vulkantektonik und -gefahren, sowie Kolleg*innen vom GFZ, der Leibniz Universität Hannover und der Eberhard Karls Universität Tübingen entwickelt.

Neue Ansätze des Maschinellen Lernens

Bisher mussten die Satellitenaufnahmen von Wissenschaftler*innen mit bloßem Auge gesichtet und ausgewertet werden. Dabei blieben insbesondere kurzzeitig auftretende Veränderungen weniger untersucht, obwohl auch sie wichtige Informationen über das Innenleben eines Vulkans liefern können. Um die überlagerten Signale in den Satellitenaufnahmen zu entschlüsseln, haben Wissenschaftler*innen weltweit bereits in den vergangenen Jahren Künstliche Intelligenz genutzt und insbesondere Methoden im Bereich des Maschinellen Lernens (ML) entwickelt. Ghosh und Motagh haben nun eine neue Herangehensweise gewählt, um die bisherigen ML-Algorithmen zu optimieren. „Unser Ansatz basiert auf der Berechnung eines minimalen aufspannenden Baumes“, sagt Doktorand Ghosh und erklärt: „Im Prinzip vergleichen unsere Algorithmen die unterschiedlichen Suchergebnisse eines der bisherigen ML-Algorithmen miteinander, um diejenigen Signale herauszufiltern, die mit größter Wahrscheinlichkeit tatsächliche Oberflächenverschiebungen anzeigen.“ Mehr erfahren….